2,758 research outputs found

    Gravitational radiation from the r-mode instability

    Get PDF
    The instability in the r-modes of rotating neutron stars can (in principle) emit substantial amounts of gravitational radiation (GR) which might be detectable by LIGO and similar detectors. Estimates are given here of the detectability of this GR based the non-linear simulations of the r-mode instability by Lindblom, Tohline and Vallisneri. The burst of GR produced by the instability in the rapidly rotating 1.4 solar mass neutron star in this simulation is fairly monochromatic with frequency near 960 Hz and duration about 100 s. A simple analytical expression is derived here for the optimal S/N for detecting the GR from this type of source. For an object located at a distance of 20 Mpc we estimate the optimal S/N to be in the range 1.2 to about 12.0 depending on the LIGO II configuration.Comment: 8 pages, 4 figure

    Effect of hyperon bulk viscosity on neutron-star r-modes

    Full text link
    Neutron stars are expected to contain a significant number of hyperons in addition to protons and neutrons in the highest density portions of their cores. Following the work of Jones, we calculate the coefficient of bulk viscosity due to nonleptonic weak interactions involving hyperons in neutron-star cores, including new relativistic and superfluid effects. We evaluate the influence of this new bulk viscosity on the gravitational radiation driven instability in the r-modes. We find that the instability is completely suppressed in stars with cores cooler than a few times 10^9 K, but that stars rotating more rapidly than 10-30% of maximum are unstable for temperatures around 10^10 K. Since neutron-star cores are expected to cool to a few times 10^9 K within seconds (much shorter than the r-mode instability growth time) due to direct Urca processes, we conclude that the gravitational radiation instability will be suppressed in young neutron stars before it can significantly change the angular momentum of the star.Comment: final PRD version, minor typos etc correcte

    R-Modes in Superfluid Neutron Stars

    Get PDF
    The analogs of r-modes in superfluid neutron stars are studied here. These modes, which are governed primarily by the Coriolis force, are identical to their ordinary-fluid counterparts at the lowest order in the small angular-velocity expansion used here. The equations that determine the next order terms are derived and solved numerically for fairly realistic superfluid neutron-star models. The damping of these modes by superfluid ``mutual friction'' (which vanishes at the lowest order in this expansion) is found to have a characteristic time-scale of about 10^4 s for the m=2 r-mode in a ``typical'' superfluid neutron-star model. This time-scale is far too long to allow mutual friction to suppress the recently discovered gravitational radiation driven instability in the r-modes. However, the strength of the mutual friction damping depends very sensitively on the details of the neutron-star core superfluid. A small fraction of the presently acceptable range of superfluid models have characteristic mutual friction damping times that are short enough (i.e. shorter than about 5 s) to suppress the gravitational radiation driven instability completely.Comment: 15 pages, 8 figure

    Effect of a neutron-star crust on the r-mode instability

    Get PDF
    The presence of a viscous boundary layer under the solid crust of a neutron star dramatically increases the viscous damping rate of the fluid r-modes. We improve previous estimates of this damping rate by including the effect of the Coriolis force on the boundary-layer eigenfunction and by using more realistic neutron-star models. If the crust is assumed to be perfectly rigid, the gravitational radiation driven instability in the r-modes is completely suppressed in neutron stars colder than about 1.5 x 10^8 K. Energy generation in the boundary layer will heat the star, and will even melt the crust if the amplitude of the r-mode is large enough. We solve the heat equation explicitly (including the effects of thermal conduction and neutrino emission) and find that the r-mode amplitude needed to melt the crust is approximately a_c = 5 x 10^{-3} for maximally rotating neutron stars. If the r-mode saturates at an amplitude larger than a_c, the heat generated is sufficient to maintain the outer layers of the star in a mixed fluid-solid state analogous to the pack ice on the fringes of the Arctic Ocean. We argue that in young, rapidly rotating neutron stars this effect considerably delays the formation of the crust. By considering the dissipation in the ice flow, we show that the final spin frequency of stars with r-mode amplitude of order unity is close to the value estimated for fluid stars without a crust

    Reducing orbital eccentricity in binary black hole simulations

    Get PDF
    Binary black hole simulations starting from quasi-circular (i.e., zero radial velocity) initial data have orbits with small but non-zero orbital eccentricities. In this paper the quasi-equilibrium initial-data method is extended to allow non-zero radial velocities to be specified in binary black hole initial data. New low-eccentricity initial data are obtained by adjusting the orbital frequency and radial velocities to minimize the orbital eccentricity, and the resulting (∌5\sim 5 orbit) evolutions are compared with those of quasi-circular initial data. Evolutions of the quasi-circular data clearly show eccentric orbits, with eccentricity that decays over time. The precise decay rate depends on the definition of eccentricity; if defined in terms of variations in the orbital frequency, the decay rate agrees well with the prediction of Peters (1964). The gravitational waveforms, which contain ∌8\sim 8 cycles in the dominant l=m=2 mode, are largely unaffected by the eccentricity of the quasi-circular initial data. The overlap between the dominant mode in the quasi-circular evolution and the same mode in the low-eccentricity evolution is about 0.99.Comment: 27 pages, 9 figures; various minor clarifications; accepted to the "New Frontiers" special issue of CQ

    Nonlinear Development of the Secular Bar-mode Instability in Rotating Neutron Stars

    Get PDF
    We have modelled the nonlinear development of the secular bar-mode instability that is driven by gravitational radiation-reaction (GRR) forces in rotating neutron stars. In the absence of any competing viscous effects, an initially uniformly rotating, axisymmetric n=1/2n=1/2 polytropic star with a ratio of rotational to gravitational potential energy T/∣W∣=0.181T/|W| = 0.181 is driven by GRR forces to a bar-like structure, as predicted by linear theory. The pattern frequency of the bar slows to nearly zero, that is, the bar becomes almost stationary as viewed from an inertial frame of reference as GRR removes energy and angular momentum from the star. In this ``Dedekind-like'' state, rotational energy is stored as motion of the fluid in highly noncircular orbits inside the bar. However, in less than 10 dynamical times after its formation, the bar loses its initially coherent structure as the ordered flow inside the bar is disrupted by what appears to be a purely hydrodynamical, short-wavelength, ``shearing'' type instability. The gravitational waveforms generated by such an event are determined, and an estimate of the detectability of these waves is presented.Comment: 25 pages, 9 figures, accepted for publication in ApJ, refereed version, updated, for quicktime movie, see http://www.phys.lsu.edu/~ou/movie/fmode/new/fmode.b181.om4.2e5.mo

    Second-order rotational effects on the r-modes of neutron stars

    Get PDF
    Techniques are developed here for evaluating the r-modes of rotating neutron stars through second order in the angular velocity of the star. Second-order corrections to the frequencies and eigenfunctions for these modes are evaluated for neutron star models. The second-order eigenfunctions for these modes are determined here by solving an unusual inhomogeneous hyperbolic boundary-value problem. The numerical techniques developed to solve this unusual problem are somewhat non-standard and may well be of interest beyond the particular application here. The bulk-viscosity coupling to the r-modes, which appears first at second order, is evaluated. The bulk-viscosity timescales are found here to be longer than previous estimates for normal neutron stars, but shorter than previous estimates for strange stars. These new timescales do not substantially affect the current picture of the gravitational radiation driven instability of the r-modes either for neutron stars or for strange stars.Comment: 13 pages, 5 figures, revte

    Generalized r-Modes of the Maclaurin Spheroids

    Get PDF
    Analytical solutions are presented for a class of generalized r-modes of rigidly rotating uniform density stars---the Maclaurin spheroids---with arbitrary values of the angular velocity. Our analysis is based on the work of Bryan; however, we derive the solutions using slightly different coordinates that give purely real representations of the r-modes. The class of generalized r-modes is much larger than the previously studied `classical' r-modes. In particular, for each l and m we find l-m (or l-1 for the m=0 case) distinct r-modes. Many of these previously unstudied r-modes (about 30% of those examined) are subject to a secular instability driven by gravitational radiation. The eigenfunctions of the `classical' r-modes, the l=m+1 case here, are found to have particularly simple analytical representations. These r-modes provide an interesting mathematical example of solutions to a hyperbolic eigenvalue problem.Comment: 12 pages, 3 figures; minor changes and additions as will appear in the version to be published in Physical Review D, January 199

    Stability of the r-modes in white dwarf stars

    Get PDF
    Stability of the r-modes in rapidly rotating white dwarf stars is investigated. Improved estimates of the growth times of the gravitational-radiation driven instability in the r-modes of the observed DQ Her objects are found to be longer (probably considerably longer) than 6x10^9y. This rules out the possibility that the r-modes in these objects are emitting gravitational radiation at levels that could be detectable by LISA. More generally it is shown that the r-mode instability can only be excited in a very small subset of very hot (T>10^6K), rather massive (M>0.9M_sun) and very rapidly rotating (P_min<P<1.2P_min) white dwarf stars. Further, the growth times of this instability are so long that these conditions must persist for a very long time (t>10^9y) to allow the amplitude to grow to a dynamically significant level. This makes it extremely unlikely that the r-mode instability plays a significant role in any real white dwarf stars.Comment: 5 Pages, 5 Figures, revte
    • 

    corecore